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Heat fluctuation distribution from non-equilibrium states 
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Abstract. A non-equilibrium state is described by parameters a, =(A, )  which are  ensemble 
averages of dynamical phase functions A,(T). By using a projection operator technique 
of Zwanzig, one can derive from the classical Liouville equation an integro-diff erential 
equation for g ( { v , } ) ,  the amplitude for the probability that the A, have respective values 
0,. These previously derived results are applied to the heat flux A, in a fluid and an 
approximate differential equation derived for g( o - J ) ,  where J =  (A,). The first moment 
of this equation yields the Cat taneeVernot te  equation with a set of auxiliary assumptions 
which are also employed in solving the equation for g. We obtain g = g‘O’[ 1 + G(  o - 511, 
where g c o ) = ( ~ / n p ) 3 ’ 2 e x p [ - p ( u - J ) 2 / ~ ]  is the Einstein distribution, and G is a sum of 
products of scalar combinations of J, U - J, and V T and Laguerre polynomials L;”’( 2’). 
where z = ( p / ~ ) ” ’ ( ~ - . l ) .  The Einstein distribution g“’ gives correctly (U’) tb O(J*)  
when V T = O  but not in the presence of a temperature gradient. 

1. Introduction 

It was shown by Zwanzig (1960, 1961) that by operating with a projection operator 
on f, the phase space distribution which obeys the classical Liouville equation, one can 
obtain a distribution function for values of a set { A , ( x ) }  of dynamical functions whose 
averages a, = 5 fAj(x)  d x  are the macroscopic variables appropriate to a given non- 
equilibrium thermodynamic description. Thus if 

W ( A ) =  G ( A ( x ’ ) - A ( x ) )  d x ‘  (la) 

(1b) 

I 
6(A’ - A )  3 n G(AI - A,)  

J 

Pf= W ( A ) - ’  f ( x ’ ) S ( A ( x ) - A ( x ’ ) )  dx’ I 
then 

g ( v )  = W(U)PflA=” (2) 
gives the amplitude for the probability that the set A has values within du of U. An 
equation for g can be derived by operating with P on the Liouville equation, and from 
the first moments of the equation for g one gets the macroscopic phenomenological 
equations of non-equilibrium thermodynamics obeyed by the set {a,}, with coefficients 
which, at least in the linear case, exhibit Onsager-Casimir symmetry. By relaxing an 
approximation of Zwanzig (1961) who took g to be perfectly sharp, it was possible 
(Nettleton 1964) to extend these results to the case where the variables include 
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Ai = iLA, with L the self-adjoint Liouville operator, so that the phenomenological 
equations exhibit inertial terms and, in particular, to include the case where the heat 
flux, J, is one of the thermodynamic state variables. In the present paper, our aim is 
to specialise these earlier results to derive the equation obeyed by the distribution g 
of fluctuations in the heat flux about the average value J in a non-equilibrium ensemble. 
By solving this equation, we can show that the Einstein expression, g - exp a 2 S / K ,  

where 6*S is the second-order fluctuation of the entropy and K = Boltzmann's constant, 
should give the heat flux correlation in the absence of a temperature gradient. When 
VT # 0, as in a steady, non-equilibrium state, the Einstein function does not give the 
non-equilibrium corrections to the correlation function. This conclusion agrees with 
a calculation (Jou and Careta 1982) based on a kinetic theory Boltzmann equation. 

To derive an equation for g, we first specify the system to be a cube of side 
I - cm immersed in an infinite fluid. The thermodynamic state variables can be 
taken to be mass density p ,  temperature T, and heat flux J.  The latter obeys (Cattaneo 
1958, Vernotte 1958) 

a J / a t =  - 2 p u - y ~ ~  (3) 

where L is a phenomenological coefficient, and the entropy S = S&, T) - pJ2. p, y, 
and L are functions of p and T. Equation (3) expresses the flux a J / a t  in terms of the 
thermodynamic forces, -2pJ and -T-'VT, conjugate to j and J, respectively 
(Nettleton 1960). The relaxation described by the first term on the right in equation 
(3) is very rapid (Jou et al 1981), and this should be calculable from a model assuming 
a closed system, since it arises from irreversible processes within the system. We can 
thus calculate the contribution of these processes to the equation for g from a model 
appropriate to a closed system (Zwanzig 1961, Nettleton 1964). The fluid surrounding 
the cube of volume 1 3 ,  selected for discussion, constitutes a heat bath coupled to the 
system by a term which, in the first approximation, is linear in V T .  This term, if held 
constant, produces an eventual steady state with J = -AV T. 

We shall suppose that p ,  T are known with high precision and calculate the 
distribution g( u) for fluctuations in the dynamical heat flux operator A,(P, Q) which 
is a function of the particle coordinates and momenta, given that the ensemble average 
of Aj is J, i.e. 

Thus 6(AJ - U) is the only Dirac delta used in defining the projection operator P in 
equations ( l ) ,  (2). Operating with this projection operator, P, on the Liouville equation, 
we have (Zwanzig 1961, equations (27) and (31), Nettleton 1964, equations (8) and 
(31)) the Fokker-Planck-type equation: 

= - V u  * (48) + ds  V; { W ( U ) D ( U ,  S)V,[g(v, t - s )  W ( V ) - ' ] } +  y V d *  VT ( 5 )  Id 
where (cf Grabert 1982) 

W (  U)-' Aj3(A, - U )  dT I 
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the integrals being taken over phase space. The first three terms in equation ( 5 ) ,  on 
multiplication by U and integration over u-space, give rise to the first two terms in 
equation (3) (Nettleton 1964, equation (16)), and the last term in equation ( 5 ) ,  which 
arises from coupling the system to the surrounding fluid acting as a set of heat reservoirs, 
leads to the term - y V T  in equation (3).  A detailed discussion of this coupling, for 
the case of a gas, with evaluation of y, is given in the appendix. 

To obtain the phenomenological equation (3)  of extended irreversible thermo- 
dynamics, certain additional assumptions (Nettleton 1964) were required to extract 
these results. 

( 1 )  Terms of third or higher order in A or A are neglected in comparison with 
second-order terms. This was invoked to justify the dropping of contributions from 
q. For the case of a heat flux, we shall show in 0 2 that q = 0. 

(2) V,K In W = -2pu. This assumption is in the spirit of the Zwanzig approach in 
which Dirac deltas represent distributions which, in practice, would not be perfectly 
sharp. Thus K In W, which is the entropy of a system microcanonically distributed in 
a shell defined by Aj = U, should be approximately the entropy when Aj can fluctuate 
narrowly. 

(3) g = gcO) [1+ G (  u -  J ) ]  where g"' is exp(a2S/K) is the Einstein approximation 
with S 2 S = 0 ( ( u - J ) * ) ,  and G ( u - J )  is of second order or higher in its arguments. 
In the present paper, we calculate G in the presence of an externally imposed 
temperature gradient, which was absent in the earlier work (Nettleton 1964) which 
referred to a closed system. This is done by solving equation ( 5 )  in a perturbation 
expansion which starts with gcO), for consistency with the earlier derivation of the 
phenomenological equations. 

(4) We make a Markovian approximation and replace g(  t - s) + g(  t )  in equation 
( 5 ) .  Otherwise, we should have to introduce higher-order time derivatives as indepen- 
dent variables or, alternatively, replace equation (3) with an integro-diff erential 
equation. 

( 5 )  We set L 3 K - ~  5; ds  5 dug") D(u, s) 2 K - ~  J;dsD( u, s) =constant. 

Thus there is assumed to be a time t sufficiently short so that the inertial term in 
equation (3) is significant yet sufficiently long so that the correlation function defining 
D may be taken to be time independent. The explicit u-dependence of D may be 
neglected in the first approximation if gcO) is very sharply peaked about U = 0 ( p  very 
large). 

Applying the last two of these assumptions to equation ( 5 ) ,  we reduce it in § 2 to 
a solvable differential equation for g( U). This is solved in 0 3 with an ansatz correspond- 
ing to assumption (3)  and use of assumption (2). The solution depends on V T  in such 
a way that when we calculate (0') in § 4, we get terms in the temperature gradient 
which are not predicted by the Einstein function, g"'. The latter, therefore, does not 
give the non-equilibrium contributions to the correlation functions when the system 
is coupled to external reservoirs and, in particular, when the fluctuations are defined 
with respect to a steady state. 

2. Pokker-Planck equation for g( u) 

To reduce equation ( 5 )  to a solvable form, we must evaluate q and investigate the 



2152 R E Nettleton 

u-dependence of D(u ,  s). For the discussion of q, we use 

where 4ii is pairwise potential for the interaction of particles at ri and ri with separation 
ril = rj - ri, Fil = - V r i 4 1 j  and h is the enthalpy per particle. 6 is the unit tensor. From 
A,, we compute 

From equation ( 7 )  we see that A, is invariant under interchange of any pair ri tf ri, 
whereas for each term in A, there is a pair whose interchange produces a change of 
sign. Since the configuration coordinates are integration variables in equation ( 6 a ) ,  
the integral will vanish if the integrand is odd with respect to interchange of a pair, 
and so q = 0. 

Similar reasoning may be used to evaluate V, [ W jh D ds] in equation (5). We have 

where r W t  is the phase at - - t  which evolves into r at t = O .  Now if we interchange 
labels i t ,  j in a configuration coordinate pair at t = 0, leaving all other coordinates 
and all momenta unchanged, this will interchange the same pair of configuration 
coordinates at - t  and thus the sign A,. Accordingly the integral in equation (9) 
vanishes like the integral defining q. 

With the foregoing results and assumption (5) of the preceding section, we reduce 
equation (5) to the form: 

aglat = KLW( u)vt(g/ W )  + Y V ~ .  VT. (10) 

We seek a solution to this equation of the form 

g( z )  = g ' O ' (  1 + G( 2 ) )  

g ( 0 ) ( z )  = , , - 3 /2  exp(-z2) 
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where z = ( p / ~ ) ’ / ~ (  U - J ) ,  and 

g‘O’G d z  = O  =g“’zG dz. (12) I 
This form of g c O )  is chosen (Nettleton 1964) to yield the phenomenological equation (3) 
from the first moment of equation (5), and the conditions (12) preserve the normalisation 
and the requirement that (A,) = J. 

3. Solution for the distribution function 

We can solve equation (10) with an ansatz, consistent with equations (1 1) and ( 1 2 ) ,  
of the form: 

G(z )  = U ~ J ~ L ~ / ~ ) ( Z * ) + U ~ J .  Z L $ ’ / ~ ’ ( Z ~ ) +  b l (VT)2L:1’2 ’ (~2)  

+ bzJ. V TL‘,’‘2’( z’) + b 3 ~  * V TLYI2’( z 2 )  + . . . . 
Here the L!””(x)  are generalised Laguerre polynomials of degree i in x ,  defined by 

The polynomials appearing in equation (13) are the lowest order for which the constant 
coefficients, aj and bj, can be determined uniquely from equation (10). The ellipsis 
signifies additional terms involving Laguerre polynomials of higher order. This choice 
of polynomials automatically satisfies equation (1 2). 

If we substitute the ansatz determined by equations (1 la ,  b )  and (13) into equation 
(10) and use equation (3) to calculate dJ /d t ,  we have: 

d g / &  = $ y g  (V T)2[$(  p /  K )  ‘ I 2  b3 - 621 

+$gJa V T [ p L ( $ b 3 m - 2 b 2 )  + : y ( a 3 m - 2 a 2 ) ]  

- y g z .  v T [ 2 ( p / K ) 1 / 2 + y a 3 ] +  . . , . (15) 

This expression is to be compared term-by-term with a result of similar form obtained 
by substituting the ansatz (13) into the right-hand member of equation (10). To 
evaluate the latter, we need assumption ( 2 )  listed in 0 1 to give the explicit 
u-dependence of In W. Comparing in turn the coefficients of J .  V T, z V T, and (V T)’, 
we get, respectively: 

These equations determine the bi in terms of a2 and a3. By equating coefficients of 
J 2  and J .  z in a g / a t  and in KLWV?(g/ W ) .  we obtain 

U3 =%‘(/A/ K ) 1 / 2 .  (17) 
-2792 

Substitution into equations (16) yields 

a 2 -  4335 p /  

b3 = &( Y / & )  ( P l  K )  ‘ I 2 .  (18) 
116059 b2 = 147390 Y/LK 
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These coefficients are affected by the truncation to Laguerre polynomials of lowest 
order and we should expect their numerical values to be altered in a higher approxi- 
mation. 

4. Discussion and calculation of correlation functions 

The calculation of the preceding section illustrates the fact that the Einstein function 
g"' does not solve equation (10) to O( U'), even when V T = 0. However, since Lil'*)( z 2 )  
is orthogonal to z2 ,  we find that g'" gives correctly the correlation function (U') = 
( ~ / p ) ( z ' ) +  J' in the absence of a coupling of the system to external reservoirs 
represented by the temperature gradient in the present problem. When V T # 0, there 
are corrections proportional to (V T)' and J .  V T which apply, in particular, to fluctu- 
ations from a non-equilibrium steady state in which J = -AV T. 

To obtain these corrections explicitly, we compute: 

= J' + 3~ / p - ( 3  K / 2p) [  bl (v  T)' -I- b2J. v TI. (19) 

In the steady state, J=-(y/2pL)VT, so that 

( ( 0 - J ) ' )  = 3 K / p  -(3K/2p)(VT)2[bi-(b2r/2CLL)1 

= 3 K / p  +$(')'/pL)Z[%-&](VT)2. (20) 

In this way, we have been able to predict that the Einstein distribution, exp a's/ K ,  

should be useful to describe fluctuations from a non-equilibrium state in a closed 
system but that it becomes inadequate when reservoirs are coupled which tend to 
induce a steady, non-equilibrium state. The distribution, g( u)  and correlations calcu- 
lated from it will depend on variables, e.g. VT, which characterise the reservoirs and 
do not appear in the free energy (Lebon 1980). Because of the truncation which has 
restricted us to Laguerre polynomials of lowest order, the present approach will 
probably require considerable elaboration before it can yield reliable numerical values 
for correlation functions. Equation (20) should be expected to agree only as to sign 
and rough order-of-magnitude with expressions calculated by alternative methods (cf 
Jou and Careta 1982). 
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Appendix 

Having proposed the VT-term in equation ( 5 )  on the basis that it yields correctly the 
last term in equation (3),  we proceed to derive this term for a moderately dilute gas 
for which 13A, = X i  [( p f p i x / 2 m 2 )  - hpixm-'], limiting ourselves for simplicity to heat 
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flow in the x-direction. The fluid outside the system, for 11 < x < -41, is replaced by 
heat reservoirs at temperatures T (  *if), where T ( x ) ,  the macroscopic temperature, is 
a continuous, differentiable function of x. Within the system, the temperature T is 
the mean kinetic energy of all the particles and does not vary microscopically from 
place to place. 

On this model, the contribution to the equation for g = W (  u)Pf from the force 
F ( r i )  on a gas particle at ri, caused by interaction with the reservoirs, is: 

-; I ~ ( A J  - v ) V p , f *  F(ri) d r .  (AI) 

In the absence of mass flow, we shall take the integral of f over all configuration 
coordinates save ri to be independent of ri., i.e. f(P) which depends only on 
momenta. The integrand in equation (Al) is zero except when ri is adjacent to a 
reservoir boundary. If there are n particles per unit volume adjacent to the boundary, 
nF, d r  = TP,da, where the upper sign refers to the reservoir at x = 11 and the lower 
to that at x = -11, P being the pressure in the reservoir and d a  an element of area of 
the boundary. The integral in equation (Al) becomes after partial integration: 

dAj - *I a I 6(AJ - v)- fP, d P  d a  
n a v  aPix 

In the first approximation, we propose to neglect fluctuations in kinetic energy and 

(A3) 

confine our attention to those in A,. The integral in equation (A2) becomes 

* ( Z K ~  - h)(  mf3)-'(ag/av)~, I*. 
Combining the contributions from the two reservoirs, we obtain 

(mf3)- ' (ZKT- h)(ag/av)[~(f/2) - ~ ( - f / 2 ) ]  = m-'($KT- h)(ag/av)(aP/aT)aT/ax. 

(A41 
On generalisation to three dimensions, equation (A4) has the form of the VT-term 
in equation ( 5 ) .  
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